Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.663
Filtrar
1.
Sci Total Environ ; 905: 167022, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37709101

RESUMO

Cortisone has a large content in rivers because of its wide range of medical applications and elimination by organisms that naturally secrete it. As a steroid hormone, cortisone is recognized as a novel endocrine disruptor. Although ecotoxicological effects of the reproductive endocrine system have mainly been reported recently, thyroid endocrine in fish remains relatively less understood. Here, adult female zebrafish were exposed to cortisone at 0.0 (control), 3.2, 38.7, and 326.9 ng/L for 60 days. Evidence in this study came from fish behavior, hormone levels, gene expression, histological and morphological examinations. The results showed that THs (thyroid hormone) level disruption and pathohistological changes occurred in the thyroid gland, which may account for the gene expression changes in the hypothalamus-pituitary-thyroid gland axis. Specifically, more conversion of T4 (thyroxine) to T3 (triiodothyronine) led to an increased TSH (thyroid stimulating hormone) level in plasma. Severe thyroid tissue damage mainly occurred in the zebrafish exposed to 326.9 ng/L of cortisone. Meanwhile, consistent with the THs trend, the fish locomotion activity displayed more anxiety and excitement, the partial blockage of GABA (γ - aminobutyric acid) synthetic pathway genes might be the explanation of the underlying mechanism. Cortisone affected the gene expressions in the visual cycle and the circadian rhythm network also suggested interactions between thyroid endocrine disruption, retinal dysfunction, and abnormal behaviors of zebrafish. In summary, these findings suggest chronic exposure to cortisone induced various adverse effects in adult female zebrafish, which may help us better understand the risk of cortisone to fish in the wild.


Assuntos
Cortisona , Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Feminino , Glândula Tireoide , Peixe-Zebra/metabolismo , Cortisona/metabolismo , Cortisona/farmacologia , Sistema Endócrino , Hormônios Tireóideos/metabolismo , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/metabolismo , Larva , Poluentes Químicos da Água/metabolismo
2.
Biol Pharm Bull ; 46(7): 969-978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394647

RESUMO

11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is the only enzyme that converts inactive glucocorticoids to active forms and plays an important role in the regulation of glucocorticoid action in target tissues. JTT-654 is a selective 11ß-HSD1 inhibitor and we investigated its pharmacological properties in cortisone-treated rats and non-obese type 2 diabetic Goto-Kakizaki (GK) rats because Asians, including Japanese, are more likely to have non-obese type 2 diabetics. Systemic cortisone treatment increased fasting plasma glucose and insulin levels and impaired insulin action on glucose disposal rate and hepatic glucose production assessed by hyperinsulinemic-euglycemic clamp, but all these effects were attenuated by JTT-654 administration. Cortisone treatment also reduced basal and insulin-stimulated glucose oxidation in adipose tissue, increased plasma glucose levels after administration of the pyruvate, the substrate of gluconeogenesis, and increased liver glycogen content. Administration of JTT-654 also inhibited all of these effects. Cortisone treatment decreased basal and insulin-stimulated 2-deoxy-D-[1-3H]-glucose uptake in 3T3-L1 adipocytes and increased the release of free fatty acids and glycerol, a gluconeogenic substrate, from 3T3-L1 adipocytes, and JTT-654 significantly attenuated these effects. In GK rats, JTT-654 treatment significantly reduced fasting plasma glucose and insulin levels, enhanced insulin-stimulated glucose oxidation in adipose tissue, and suppressed hepatic gluconeogenesis as assessed by pyruvate administration. These results demonstrated that glucocorticoid was involved in the pathology of diabetes in GK rats, as in cortisone-treated rats, and that JTT-654 ameliorated the diabetic conditions. Our results suggest that JTT-654 ameliorates insulin resistance and non-obese type 2 diabetes by inhibiting adipose tissue and liver 11ß-HSD1.


Assuntos
Cortisona , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Ratos , Animais , Glucocorticoides/uso terapêutico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Cortisona/uso terapêutico , Cortisona/farmacologia , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/patologia , Insulina , Glucose
3.
J Nutr Sci Vitaminol (Tokyo) ; 68(5): 420-428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310076

RESUMO

Vitamin D and its receptor (vitamin D receptor; VDR) regulate calcium homeostasis in mammals. Recently, studies have shown that serum concentrations of 25-hydroxyvitamin D (25VD) are negatively associated with insulin resistance and the incidence of type 2 diabetes. In adipose tissues, glucose transporter 4 (GLUT4) contributes to insulin-stimulated glucose uptake; however, the effect of 25VD on glucose uptake in adipocytes remains unclear. We examined the role of 25VD in glucose uptake and the differentiation of adipose-derived stromal cells. Insulin-stimulated glucose uptake in adipocytes was increased by treatment with 25VD and decreased by VDR knockdown. The expression levels of GLUT4 were upregulated by 25VD treatment. 25VD exposure increased the expression of adipocyte differentiation-related genes including peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding proteins through VDR, thereby enhancing the formation of mature adipocytes. Moreover, 25VD increased the expression levels of 11ß-hydroxysteroid dehydrogenase 1 (HSD11B1), which catalyzes the conversion of cortisone to cortisol in a concentration-dependent manner. 25VD-stimulated adipocyte differentiation was suppressed by HSD11B1 knockdown. Cortisone together with 25VD enhanced adipocyte differentiation, whereas synthesized glucocorticoid dexamethasone-induced adipocyte differentiation is not promoted by 25VD. Overall, these results indicate that 25VD stimulates adipocyte differentiation through the induction of HSD11B1 expression, leading to increased insulin-induced glucose uptake in adipocytes.


Assuntos
Cortisona , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cortisona/metabolismo , Cortisona/farmacologia , RNA Mensageiro/metabolismo , Adipócitos , Diferenciação Celular , Vitamina D/farmacologia , Vitamina D/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Células 3T3-L1 , Mamíferos/genética , Mamíferos/metabolismo
4.
Front Immunol ; 12: 753822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675935

RESUMO

Chronic psychosocial stress is a risk factor for the development of numerous disorders, of which most are associated with chronic low-grade inflammation. Given the immunosuppressive effects of glucocorticoids (GC), one underlying mechanism might be the development of stress-induced GC resistance in certain immune cell subpopulations. In line with this hypothesis, male mice exposed to the chronic subordinate colony housing (CSC, 19 days) model develop GC resistance of in vitro lipopolysaccharide (LPS)-stimulated splenocytes, splenomegaly and an increased percentage of splenic CD11b+ cells. Here male C57BL/6N mice were euthanized at different days during CSC, and following 30 days of single housing after stressor termination to assess when CSC-induced splenic GC resistance starts to develop and whether this is a transient effect. Moreover, splenic CD11b, GC receptor (GR) and/or macrophage migration inhibiting factor (MIF) protein levels were quantified at respective days. While mild forms of CSC-induced GC resistance, increased splenic CD11b expression and/or splenomegaly were detectable on days 8 and 9 of CSC, more severe forms took until days 15 and 16 to develop, but normalized almost completely within 30 days following stressor termination (day 51). In contrast, splenic GR expression was decreased in CSC versus single-housed control (SHC) mice at all days assessed. While MIF expression was increased on days 15 and 16 of CSC, it was decreased in CSC versus SHC mice on day 20 despite persisting splenomegaly, increased CD11b expression and functional GC resistance. In summary, our data indicate that GC resistance and CD11b+ cell-mediated splenomegaly develop gradually and in parallel over time during CSC exposure and are transient in nature. Moreover, while we can exclude that CSC-induced reduction in splenic GR expression is sufficient to induce functional GC resistance, the role of MIF in CD11b+ cell-mediated splenomegaly and GC resistance requires further investigation.


Assuntos
Cortisona/farmacologia , Glucocorticoides/farmacologia , Leucócitos/fisiologia , Baço/citologia , Estresse Psicológico/imunologia , Comportamento Agonístico , Animais , Mordeduras e Picadas , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Doença Crônica , Cortisona/sangue , Aglomeração , Resistência a Medicamentos , Abrigo para Animais , Oxirredutases Intramoleculares/biossíntese , Oxirredutases Intramoleculares/genética , Leucócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/biossíntese , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/genética , Baço/patologia , Territorialidade
5.
J Steroid Biochem Mol Biol ; 210: 105850, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33639236

RESUMO

11ß-Hydroxysteroid dehydrogenase 1 (11ß-HSD1) plays an important role in pre-receptor glucocorticoid metabolism. This enzyme is expressed in bone, increases with age, and catalyzes the conversion of the inactive glucocorticoid cortisone into the active glucocorticoid cortisol and vice versa. Here we hypothesized that the physiological activity of 11ß-HSD1 to produce cortisol in human mesenchymal progenitor cells (hMSC) is principally sufficient to shift the differentiation potential in the direction of adipogenic. We thus investigated differentiating hMSCs and the mesenchymal stem cell line SCP-1 cultured under osteogenic conditions and stimulated with supra-physiological cortisone levels. The release of active cortisol into the medium was monitored and the influence on cell differentiation analyzed. We revealed an increase in 11ß-HSD1 expression followed by increased reductive activity of the enzyme, thereby inducing a more adipogenic phenotype of the cell models via cortisol with negative effects on osteogenesis. Through inhibition experiments with the specific inhibitor 10 j, we proved the enzyme specificity for cortisol synthesis and adipogenic differentiation. Increased expression of 11ß-HSD1 followed by higher cortisol levels might thus explain bone marrow adiposity followed by reduced bone quality and stability in old age or in situations of supra-physiological glucocorticoid exposure.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Adipogenia , Hidrocortisona/biossíntese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Cromatografia Líquida , Cortisona/metabolismo , Cortisona/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Humanos , Hidrocortisona/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese/fisiologia , Espectrometria de Massas em Tandem
6.
Int J Mol Med ; 46(6): 1951-1957, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125502

RESUMO

Curcumin has been used since ancient times as a treatment for a wide range of pathologies. For centuries, it has been considered to be an effective aid for common human diseases. Curcuma longa has been reported to possess various beneficial properties and actions, including anti­inflammatory, proapoptotic, antiangiogenic and cortisone­like actions. Pterygium is a degenerative disorder of the conjunctiva indicative of a strong inflammatory condition that requires surgical treatment, which often results in disfiguring sclerocorneal scars. The delay in the healing of superficial corneal wounds caused by topical administration of light­cortisone results in improved restoration of corneal functions and anatomy compared with physiological healing processes. The present review is focused on the medicinal properties of curcumin, the main component of Curcuma longa extract, in particular its strong cortisone­like effect, and its potential use for the prevention and treatment of sclerocorneal scars resulting from pterygium surgical excision.


Assuntos
Cicatriz/tratamento farmacológico , Cicatriz/etiologia , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/etiologia , Extratos Vegetais/uso terapêutico , Pterígio/complicações , Pterígio/cirurgia , Animais , Cortisona/farmacologia , Cortisona/uso terapêutico , Curcuma/efeitos adversos , Humanos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos
7.
Br Poult Sci ; 60(4): 395-403, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132872

RESUMO

1. In this study, geese (Anas cygnoides) embryonic pituitary cells were cultured in vitro to determine if glucocorticoids could induce growth hormone (GH) expression and to investigate the molecular mechanisms involved in this process. 2. On embryonic day 15 (e15) and e20 the pituitary cells were treated with corticosterone (CORT), membrane impermeable bovine serum albumin-conjugate corticosterone (CORT-BSA), dexamethasone (DEX), and a glucocorticoid receptor (GR) antagonist (RU486) to detect responsiveness of somatotrophs to glucocorticoids. 3. Treatment with CORT, CORT-BSA, and DEX for as little as 6 h increased the percentage of GH-positive cells (P < 0.01) and increased GH mRNA expression (P < 0.01) in e15 goose pituitary cells compared to the control. CORT significantly increased the level of GH protein secreted from cultured e15 goose embryonic pituitary cells, and CORT-BSA increased GH secretion from e20 goose embryonic pituitary cells. 4. A significant increase was observed in the glucocorticoid receptor in GR transcription levels (P < 0.01) with CORT, CORT-BSA, and DEX treatment. Furthermore, the CORT-stimulated GH mRNA expression was completely negated by pre-treatment with RU486. 5. These findings demonstrate that glucocorticoids can stimulate somatotroph differentiation in vitro, as characterised by enhanced GH protein secretion andmRNA expression in cultured geese embryonic pituitary cells. The membrane GR was involved in pituitary somatotroph differentiation induced by glucocorticoids during the embryonic development of geese.


Assuntos
Diferenciação Celular/fisiologia , Corticosterona/farmacologia , Cortisona/farmacologia , Dexametasona/farmacologia , Gansos/fisiologia , Receptores de Glucocorticoides/metabolismo , Soroalbumina Bovina/farmacologia , Somatotrofos/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Gansos/genética , Antagonistas de Hormônios/farmacologia , Mifepristona/farmacologia , Hipófise/fisiologia , RNA Mensageiro/metabolismo
8.
Microbes Infect ; 21(7): 287-295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735720

RESUMO

Osteoarticular brucellosis is the most frequent complication of active disease. A large amount of cells in bone are osteocytes. Since bone remodeling process is regulated by hormones we sought to study the effect of cortisol and DHEA in Brucella abortus-infected osteocytes. Cortisol treatment inhibited the expression of IL-6, TNF-α, MMP-2 and RANKL in B. abortus-infected osteocytes. DHEA could reverse the inhibitory effect of cortisol on MMP-2 production. B. abortus infection inhibited connexin 43 (Cx43) expression in osteocytes. This expression was increased when cortisol was incorporated during the infection and DHEA treatment partially reversed the effect of cortisol. Osteocytes-infected with B. abortus induced osteoclast's differentiation. Yet, the presence of cortisol, but not DHEA, during osteocyte infection inhibited osteoclastogenesis. Glucocorticoid receptor (GR) is implicated in the signaling of cortisol. Infection with B. abortus was able to increase GRα/ß ratio. Levels of intracellular cortisol are not only dependent on GR expression but also a result of the activity of the isoenzymes 11ß-hydroxysteroid dehydrogenase (11ß-HSD)-1 (cortisone to cortisol conversion), 11ß-HSD2 (cortisol to cortisone conversion). B. abortus infection increased 11ß-HSD 1/2 ratio and cortisone mimicked the effect of cortisol. Our results indicated that cortisol and DHEA could modulate osteocyte responses during B. abortus infection.


Assuntos
Brucella abortus/fisiologia , Brucelose/patologia , Osteócitos/microbiologia , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , Animais , Brucella abortus/crescimento & desenvolvimento , Brucella abortus/metabolismo , Brucelose/metabolismo , Células Cultivadas , Conexina 43/metabolismo , Cortisona/farmacologia , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Desidroepiandrosterona/farmacologia , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Viabilidade Microbiana , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoprotegerina/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Transdução de Sinais
9.
Exp Dermatol ; 28(3): 300-307, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30688372

RESUMO

There is an unmet need in novel therapeutics for atopic dermatitis (AD). We examined the effects of autologous adipose-derived stem cells (ADSCs) on AD-like skin lesions induced by the application of 2,4-dinitrochlorobenzene (DNCB) in NC/Nga mice. Autologous ADSCs and ADSC-conditioned medium (ADSC-CM) were injected intralesionally three times. Clinical severity and histopathologic findings were compared in sham naïve control, saline-treated, ADSC-treated, ADSC-CM-treated and 2.5% cortisone lotion-applied animals. The severity index, skin thickness, mast cell number, as well as expression levels of thymic stromal lymphopoietin, CD45, chemoattractant receptor-homologous molecule, chemokine ligand 9 and chemokine ligand 20 were significantly lower in mice treated with ADSC, ADSC-CM, or 2.5% cortisone lotion. Tissue levels of interferon-γ as well as serum levels of interleukin-33 and immunoglobulin E levels were also decreased in those groups. We conclude that autologous ADSCs improved DNCB-induced AD-like skin lesions in NC/Nga mice by reducing inflammation associated with Th2 immune response and interferon-γ.


Assuntos
Adipócitos/citologia , Dermatite Atópica/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Tecido Adiposo/citologia , Animais , Transplante de Células , Quimiocina CCL20/metabolismo , Quimiocina CXCL2/metabolismo , Cortisona/farmacologia , Meios de Cultivo Condicionados , Citocinas/metabolismo , Eczema/metabolismo , Imunoglobulina E/metabolismo , Inflamação , Injeções Subcutâneas , Interferon gama/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Masculino , Camundongos , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Pele/metabolismo , Células Th2/citologia , Linfopoietina do Estroma do Timo
10.
Br J Cancer ; 117(7): 984-993, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28797028

RESUMO

BACKGROUND: Recent studies have shown that production of cortisol not only takes place in several non-adrenal peripheral tissues such as epithelial cells but, also, the local inter-conversion between cortisone and cortisol is regulated by the 11ß-hydroxysteroid dehydrogenases (11ß-HSDs). However, little is known about the activity of this non-adrenal glucocorticoid system in cancers. METHODS: The presence of a functioning glucocorticoid system was assessed in human skin squamous cell carcinoma (SCC) and melanoma and further, in 16 epithelial cell lines from 8 different tissue types using ELISA, western blotting and immunofluorescence. 11ß-HSD2 was inhibited both pharmacologically and by siRNA technology. Naïve CD8+ T cells were used to test the paracrine effects of cancer-derived cortisol on the immune system in vitro. Functional assays included cell-cell adhesion and cohesion in two- and three-dimensional models. Immunohistochemical data of 11ß-HSD expression were generated using tissue microarrays of 40 cases of human SCCs as well as a database featuring 315 cancer cases from 15 different tissues. RESULTS: We show that cortisol production is a common feature of malignant cells and has paracrine functions. Cortisol production correlated with the magnitude of glucocorticoid receptor (GR)-dependent inhibition of tumour-specific CD8+ T cells in vitro. 11ß-HSDs were detectable in human skin SCCs and melanoma. Analyses of publicly available protein expression data of 11ß-HSDs demonstrated that 11ß-HSD1 and -HSD2 were dysregulated in the majority (73%) of malignancies. Pharmacological manipulation of 11ß-HSD2 activity by 18ß-glycyrrhetinic acid (GA) and silencing by specific siRNAs modulated the bioavailability of cortisol. Cortisol also acted in an autocrine manner and promoted cell invasion in vitro and cell-cell adhesion and cohesion in two- and three-dimensional models. Immunohistochemical analyses using tissue microarrays showed that expression of 11ß-HSD2 was significantly reduced in human SCCs of the skin. CONCLUSIONS: The results demonstrate evidence of a cancer-associated glucocorticoid system and show for the first time, the functional significance of cancer-derived cortisol in tumour progression.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Carcinoma de Células Escamosas/enzimologia , Células Epiteliais/enzimologia , Hidrocortisona/metabolismo , Melanoma/enzimologia , Neoplasias Cutâneas/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/análise , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Hormônio Adrenocorticotrópico/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/química , Adesão Celular , Proliferação de Células/efeitos dos fármacos , Cortisona/farmacologia , Meios de Cultivo Condicionados/farmacologia , Regulação para Baixo , Inativação Gênica , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Células HT29 , Humanos , Hidrocortisona/imunologia , Hidrocortisona/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Células MCF-7 , Melanoma/química , Comunicação Parácrina , Receptores de Glucocorticoides/imunologia , Receptores de Glucocorticoides/metabolismo , Neoplasias Cutâneas/química
11.
Mol Cell Biochem ; 436(1-2): 71-78, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28585087

RESUMO

We previously demonstrated the role of Kvß1.1 subunit of voltage-activated potassium channel in heart for its sensory roles in detecting changes in NADH/NAD and modulation of ion channel. However, the pharmacological role for the association of Kvß1 via its binding to ligands such as cortisone and its analogs remains unknown. Therefore, we investigated the significance of Kvß1.1 binding to cortisone analogs and AR inhibitor epalrestat. In addition, the aldose reductase (AR) inhibitor epalrestat was identified as a pharmacological target and modulator of cardiac activity via binding to the Kvß1 subunit. Using a combination of ex vivo cardiac electrophysiology and in silico binding, we identified that Kvß1 subunit binds and interacts with epalrestat. To identify the specificity of the action potential changes, we studied the sensitivity of the action potential prolongation by probing the electrical changes in the presence of 4-aminopyridine and evaluated the specificity of pharmacological effects in the hearts from Kvß1.1 knock out mouse. Our results show that pharmacological modulation of cardiac electrical activity by cortisone analogs and epalrestat is mediated by Kvß1.1.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Aldeído Redutase/antagonistas & inibidores , Cortisona/farmacologia , Inibidores Enzimáticos/farmacologia , Canal de Potássio Kv1.1/metabolismo , Miocárdio/metabolismo , Rodanina/análogos & derivados , Tiazolidinas/farmacologia , Potenciais de Ação/genética , Animais , Canal de Potássio Kv1.1/genética , Camundongos , Camundongos Knockout , Rodanina/farmacologia
12.
Ann Endocrinol (Paris) ; 77(6): 677-679, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27646492

RESUMO

Increased fetal exposure to glucocorticoids is a key mechanism thought to underlie the early life programming of later life disease. There is substantial experimental data in animal models in support of this hypothesis. Emerging evidence suggests glucocorticoid programming may also occur in humans with some studies now linking maternal endogenous cortisol levels with size at birth and gestation at delivery. The dramatic changes to the maternal hypothalamic-pituitary-adrenal axis during pregnancy mean that large-scale studies in humans are challenging to conduct. One of the key regulators of fetal glucocorticoid exposure is the activity of placental "barrier" enzyme 11ß-hydroxysteroid dehydrogenase type 2 (HSD2) which converts active cortisol to inactive cortisone. In animal models, this enzyme is down-regulated by various influences including maternal malnutrition, inflammation or stress but it is not known whether this is a major factor in regulation of human fetal glucocorticoid exposure. More studies are needed to understand the mechanisms whereby altered fetal glucocorticoid exposure may alter fetal growth trajectories and whether changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy could be suitable as a biomarker to identify those pregnancies most at risk.


Assuntos
Glucocorticoides/farmacologia , Troca Materno-Fetal , Efeitos Tardios da Exposição Pré-Natal , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Animais Recém-Nascidos , Peso ao Nascer/efeitos dos fármacos , Cortisona/efeitos adversos , Cortisona/farmacologia , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Humanos , Hidrocortisona/efeitos adversos , Hidrocortisona/farmacologia , Sistema Hipotálamo-Hipofisário/fisiologia , Recém-Nascido , Troca Materno-Fetal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
13.
Oncotarget ; 7(23): 35144-58, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27147573

RESUMO

Stress has been suggested as one of important cause of human cancer without molecular biological evidence. Thus, we test the effect of stress-related hormones on cell viability and mitotic fidelity. Similarly to estrogen, stress hormone cortisol and its relative cortisone increase microtubule organizing center (MTOC) number through elevated expression of γ-tubulin and provide the Taxol resistance to human cancer cell lines. However, these effects are achieved by glucocorticoid hormone receptor (GR) but not by estrogen receptor (ER). Since ginsenosides possess steroid-like structure, we hypothesized that it would block the stress or estrogen-induced MTOC amplification and Taxol resistance. Among tested chemicals, rare ginsenoside, CSH1 (Rg6) shows obvious effect on inhibition of MTOC amplification, γ-tubulin induction and Taxol resistance. Comparing to Fulvestant (FST), ER-α specific inhibitor, this chemical can block the cortisol/cortisone-induced MTOC deregulation as well as ER-α signaling. Our results suggest that stress hormone induced tumorigenesis would be achieved by MTOC amplification, and CSH1 would be useful for prevention of stress-hormone or steroid hormone-induced chromosomal instability.


Assuntos
Cortisona/farmacologia , Ginsenosídeos/farmacologia , Hidrocortisona/farmacologia , Centro Organizador dos Microtúbulos/efeitos dos fármacos , Estresse Psicológico/complicações , Linhagem Celular Tumoral , Humanos , Paclitaxel/farmacologia , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
14.
Microb Cell Fact ; 15: 52, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980090

RESUMO

BACKGROUND: Intracellular metabolism of glucocorticoid hormones plays an important role in the pathogenesis of metabolic syndrome and regulates, among many physiological processes, collagen metabolism in skin. At the peripheral level the concentration of active glucocorticoids is mainly regulated by the 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) enzyme, involved in the conversion of cortisone into the biologically active hormone cortisol. Cortisol interacts with the glucocorticoid receptor and regulates the expression of different classes of genes within the nucleus. Due to its implication in glucocorticoid metabolism, the inhibition of 11ß-HSD1 activity has become a dominant strategy for the treatment of metabolic syndrome. Moreover, inhibitors of this target enzyme can be used for development of formulations to counteract skin ageing. Here we present the construction of two yeast cell based assays that can be used for the screening of novel 11ß-HSD1 inhibitors. RESULTS: The yeast Saccharomyces cerevisiae is used as a host organism for the expression of human 11ß-HSD1 as well as a genetically encoded assay system that allows intracellular screening of molecules with 11ß-HSD1 inhibitory activity. As proof of concept the correlation between 11ß-HSD1 inhibition and fluorescent output signals was successfully tested with increasing concentrations of carbenoxolone and tanshinone IIA, two known 11ß-HSD1 inhibitors. The first assay detects a decrease in fluorescence upon 11ß-HSD1 inhibition, whereas the second assay relies on stabilization of yEGFP upon inhibition of 11ß-HSD1, resulting in a positive read-out and thus minimizing the rate of false positives sometimes associated with read-outs based on loss of signals. Specific inhibition of the ABC transporter Pdr5p improves the sensitivity of the assay strains to cortisone concentrations by up to 60 times. CONCLUSIONS: Our yeast assay strains provide a cost-efficient and easy to handle alternative to other currently available assays for the screening of 11ß-HSD1 inhibitors. These assays are designed for an initial fast screening of large numbers of compounds and enable the selection of cell permeable molecules with target inhibitory activity, before proceeding to more advanced selection processes. Moreover, they can be employed in yeast synthetic biology platforms to reconstitute heterologous biosynthetic pathways of drug-relevant scaffolds for simultaneous synthesis and screening of 11ß-HSD1 inhibitors at intracellular level.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Saccharomyces cerevisiae , Cortisona/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Síndrome Metabólica/tratamento farmacológico , Terapia de Alvo Molecular , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
15.
Mol Endocrinol ; 29(6): 856-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25866873

RESUMO

Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5-6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection.


Assuntos
Sequência Conservada , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Receptores Citoplasmáticos e Nucleares/genética , Acetilação/efeitos dos fármacos , Animais , Pareamento de Bases , Sequência de Bases , Encéfalo/metabolismo , Cromatina/metabolismo , Cortisona/farmacologia , Evolução Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Loci Gênicos , Histonas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Ligação Proteica/efeitos dos fármacos , RNA Polimerase II/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos , Tri-Iodotironina/farmacologia , Xenopus
16.
Naunyn Schmiedebergs Arch Pharmacol ; 388(6): 653-61, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25743574

RESUMO

Glucocorticoids are hormones released in response to stress that are involved in various physiological processes including immune functions. One immune-modulating mechanism is achieved by the Kv1.3 voltage-dependent potassium channel, which is expressed highly in lymphocytes including effector memory T lymphocytes (TEM). Although glucocorticoids are known to inhibit Kv1.3 function, the detailed inhibitory mechanism is not yet fully understood. Here we studied the rapid non-genomic effects of cortisone and hydrocortisone on the human Kv1.3 channel expressed in Xenopus oocytes. Both cortisone and hydrocortisone reduced the amplitude of the Kv1.3 channel current in a concentration-dependent manner. Both cortisone and hydrocortisone rapidly and irreversibly inhibited Kv1.3 currents, eliminating the possibility of genomic regulation. Inhibition rate was stable relative to the degree of depolarization. Kinetically, cortisone altered the activating gate of Kv1.3 and hydrocortisone interacted with this channel in an open state. These results suggest that cortisone and hydrocortisone inhibit Kv1.3 currents via a non-genomic mechanism, providing a mechanism for the immunosuppressive effects of glucocorticoids.


Assuntos
Cortisona/farmacologia , Hidrocortisona/farmacologia , Canal de Potássio Kv1.3/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Humanos , Canal de Potássio Kv1.3/genética , Potenciais da Membrana/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Xenopus
17.
Eur J Pharmacol ; 746: 158-66, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25449034

RESUMO

Glucocorticoids are the primary hormones that respond to stress and protect organisms from dangerous situations. The glucocorticoids hydrocortisone and its dormant form, cortisone, affect the cardiovascular system with changes such as increased blood pressure and cardioprotection. Kv1.5 channels play a critical role in the maintenance of cellular membrane potential and are widely expressed in pancreatic ß-cells, neurons, myocytes, and smooth muscle cells of the pulmonary vasculature. We examined the electrophysiological effects of both cortisone and hydrocortisone on human Kv1.5 channels expressed in Xenopus oocytes using a two-microelectrode voltage clamp technique. Both cortisone and hydrocortisone rapidly and irreversibly suppressed the amplitude of Kv1.5 channel current with IC50 values of 50.2±4.2µM and 33.4±3.2µM, respectively, while sustained the current trace shape of Kv1.5 current. The inhibitory effect of cortisone on Kv1.5 decreased progressively from -10mV to +30mV, while hydrocortisone׳s inhibition of the channel did not change across the same voltage range. Both cortisone and hydrocortisone blocked Kv1.5 channel currents in a non-use-dependent manner and neither altered the channel׳s steady-state activation or inactivation curves. These results show that cortisone and hydrocortisone inhibited Kv1.5 channel currents differently, and that Kv1.5 channels were more sensitive to hydrocortisone than to cortisone.


Assuntos
Cortisona/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Hidrocortisona/farmacologia , Canal de Potássio Kv1.5/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Oócitos/metabolismo , Fatores de Tempo , Xenopus laevis/genética
18.
J Pharmacol Exp Ther ; 352(1): 67-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355646

RESUMO

In human adrenarche during childhood, the secretion of dehydroepiandrosterone (DHEA) from the adrenal gland increases due to its increased synthesis and/or decreased metabolism. DHEA is synthesized by 17α-hydroxylase/17,20-lyase, and is metabolized by 3ß-hydroxysteroid dehydrogenase type 2 (3ßHSD2). In this study, the inhibition of purified human 3ßHSD2 by the adrenal steroids, androstenedione, cortisone, and cortisol, was investigated and related to changes in secondary enzyme structure. Solubilized, purified 3ßHSD2 was inhibited competitively by androstenedione with high affinity, by cortisone at lower affinity, and by cortisol only at very high, nonphysiologic levels. When purified 3ßHSD2 was bound to lipid vesicles, the competitive Ki values for androstenedione and cortisone were slightly decreased, and the Ki value of cortisol was decreased 2.5-fold, although still at a nonphysiologic level. The circular dichroism spectrum that measured 3ßHSD2 secondary structure was significantly altered by the binding of cortisol, but not by androstenedione and cortisone. Our import studies show that 3ßHSD2 binds in the intermitochondrial space as a membrane-associated protein. Androstenedione inhibits purified 3ßHSD2 at physiologic levels, but similar actions for cortisol and cortisone are not supported. In summary, our results have clarified the mechanisms for limiting the metabolism of DHEA during human adrenarche.


Assuntos
17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Adrenarca/efeitos dos fármacos , Adrenarca/fisiologia , Androstenodiona/farmacologia , Inibidores Enzimáticos/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Adrenarca/metabolismo , Androstenodiona/metabolismo , Linhagem Celular , Cortisona/metabolismo , Cortisona/farmacologia , Inibidores Enzimáticos/metabolismo , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Lipossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Conformação Proteica , Transporte Proteico/efeitos dos fármacos , Solubilidade
19.
Int J Biochem Cell Biol ; 55: 35-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066316

RESUMO

The role of the redox state of Kvß subunits in the modulation of Kv1 potassium channels has been well documented over the past few years. It has been suggested that a molecule that binds to or inhibits the aldo-keto reductase activity of Kvß might affect the modulation of channel properties. Previous studies of possible modulators of channel activity have shown that cortisone and some related compounds are able to physically dissociate the channel components by binding to a site at the interface between α and ß subunits. Herein, we describe some new inhibitors of rat brain Kvß2, identified using an assay based on multiple substrate turnover. This approach allows one to focus on molecules that specifically block NADPH oxidation. These studies showed that, at 0.5mM, 3,4-dihydroxphenylacetic acid (DOPAC) was an inhibitor of Kvß2 turnover yielding a ∼ 40-50% reduction in the aldehyde reductase activity of this subunit. Other significant inhibitors include the bioflavinoid, rutin and the polyphenol resveratrol; some of the known cardioprotective effects of these molecules may be attributable to Kv1 channel modulation. Cortisone or catechol caused moderate inhibition of Kvß2 turnover, and the aldo-keto reductases inhibitor valproate had an even smaller effect. Despite the importance of the Kv1 channels in a number of disease states, there have been few Kvß2 inhibitors reported. While the ones identified in this study are only effective at high concentrations, they could serve as tools to decipher the role of Kvß2 in vivo and, eventually, inform the development of novel therapeutics.


Assuntos
Encéfalo/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Animais , Ligação Competitiva , Encéfalo/metabolismo , Catecóis/metabolismo , Catecóis/farmacologia , Cortisona/metabolismo , Cortisona/farmacologia , Cinética , NADP/metabolismo , Oxirredução/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , Ratos , Resveratrol , Rutina/metabolismo , Rutina/farmacologia , Superfamília Shaker de Canais de Potássio/metabolismo , Estilbenos/metabolismo , Estilbenos/farmacologia , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia
20.
J Pharmacol Exp Ther ; 349(1): 66-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24511146

RESUMO

Signals from intracellular glucocorticoids (GCs) via 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) in adipose tissues have been reported to serve as amplifiers leading to deterioration of glucose metabolism associated with obesity. To elucidate adipose dysfunction via 11ß-HSD1 activation in the development of obesity-related diabetes, we established novel diabetic mice by implanting a cortisone pellet (CP) in diet-induced obesity (DIO) mice. Cortisone pellet-implanted DIO mice (DIO/CP mice) showed hyperglycemia, insulin resistance, hyperlipidemia, and ectopic fat accumulation, whereas cortisone pellet implantation in lean mice did not induce hyperglycemia. In DIO/CP mice, indexes of lipolysis such as plasma glycerol and nonesterified fatty acids (NEFAs) increased before hyperglycemia appeared. Furthermore, the adipose mRNA level of 11ß-HSD1 was up-regulated in DIO/CP mice compared with sham-operated DIO mice. RU486 (mifepristone, 11ß-[p-(dimethylamino)phenyl]-17ß-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), a glucocorticoid receptor antagonist, decreased adipose mRNA levels of 11ß-HSD1 as well as adipose triglyceride lipase. RU486 also improved plasma NEFA, glycerol, and glucose levels in DIO/CP mice. These results demonstrate that lipolysis in adipose tissues caused by GC activation via 11ß-HSD1 serves as a trigger for diabetes with ectopic fat accumulation. Our findings also indicate the possibility of a vicious circle of GC signals via 11ß-HSD1 up-regulation in adipose tissues, contributing to deterioration of glucose metabolism to result in diabetes. Our DIO/CP mouse could be a suitable model of type 2 diabetes to evaluate adipose dysfunction via 11ß-HSD1.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , Tecido Adiposo/enzimologia , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucocorticoides/metabolismo , Obesidade/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Cortisona/administração & dosagem , Cortisona/farmacologia , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/etiologia , Glucocorticoides/sangue , Glucose/metabolismo , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/farmacologia , Obesidade/induzido quimicamente , Obesidade/complicações , Obesidade/enzimologia , Receptores de Glucocorticoides/antagonistas & inibidores , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...